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2 Abstract

A new set of bias-corrected daily climate scenarios for 28 

temperature and 27 precipitation stations in Switzerland is 

presented. The scenarios are based on the quantile mapping 

(QM) methodology, are available for 15 GCM-RCM model 

chains of the ENSEMBLES project and provide transient time 

series for the entire period 1980–2099. An extensive valida-

tion exercise provides strong confidence in the quality and 

robustness of the new QM-based scenarios. They are com-

plementing the delta change-based local daily scenarios of 

CH2011 and provide an added value with respect to future 

changes in temporal climate variability and in extremes. They 

pave the way towards the next release of the Swiss national 

climate scenarios CH2018 to be released in 2018.
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1|	 Background and Motivation

The CH2011 Swiss Climate Change Scenarios (CH2011 2011) 

provide climate scenario products that are widely used by the 

Swiss climate impacts community (e.g. CH2014-Impacts 2014) 

and that are ultimately relevant for policymaking in the frame 

of the Swiss national adaptation strategy (Bundesamt für Um-

welt BAFU 2012). Despite their documented usefulness and 

applicability for a large range of climate impact assessments, 

the CH2011 scenarios at daily resolution are subject to cer-

tain limitations which partly relate to the fact that all CH2011 

products are based on the delta change (DC) approach. DC 

provides climate change signals that can be used to scale 

observed mean conditions or observed time series in a his-

torical reference period in order to obtain climate conditions 

valid for a future scenario period (e.g. Bosshard et al. 2011).

The change signals are obtained by comparing climate model 

output for the historical and the future period. Advantages 

of DC are a comparatively easy and straightforward imple-

mentation and the fact that the historical reference period is 

entirely based on observations and, hence, can be assumed 

to be realistic. Furthermore, the derived scenario conditions 

mimic the (observed) characteristics of the reference period 

to a large extent, for instance with respect to spatio-tempo-

ral climate variability and inter-variable relations (such as the 

inter-dependency between temperature and precipitation). 

The derived scenario products are therefore unlikely to suffer 

from strong distortions and inhomogeneities of these patterns.

The DC approach, however, is based on a number of assump-

tions that are not necessarily fulfilled. As a consequence, DC 

cannot account for the full spectrum of possible climatic 

changes which partly restricts its applicability. Limitations of 

DC and, hence, of the CH2011 scenarios relate to:

(1)	 The neglect of changes in temporal variability:
	 In order to obtain time series valid for a future period, 

DC scales observational series of the historical period. 

As a consequence, the temporal variability of the future  

series mimics the variability in the observations to a large 

extent. For instance, the future sequence of wet and dry 

days will almost be identical to the observed sequence. 

The same is true for variabilities on larger temporal scales 

(seasonal, annual). If future climate change will be associ-

ated with changes in temporal variability these changes 

will not be reflected by DC-based scenario time series.

(2)	 The restricted ability to capture changes in extremes:
	 The DC method applied in CH2011 scales the observed 

time series by the climate change signal of the 30-year 

mean value, which can considerably differ from the climate 

change signal of extremes. Potential changes in extreme 

conditions are therefore not (or only partly) reflected by 

the DC approach.

(3)	 The assumption of stationary climate model biases:
	 DC approaches are based on the comparison of climate 

model output for a historical reference and a future sce-

nario period. The obtained climate change signals implic-

itly assume model biases that are similar in both periods. 

Non-stationary model biases which are likely to be pre-

sent (e.g. Buser et al. 2009; Bellprat et al. 2013) and that 

would influence the derived climate change signal are 

not accounted for.

(4)	 The non-transient setup with discrete scenario 
	 periods:
	 Standard DC approaches provide climate change sig-

nals for discrete scenario time slices and with respect to 

a specific historical reference period. The CH2011 sce-

narios, for instance consider the three scenario periods 

2020–2049, 2045–2074 and 2070–2099 with respect to 

the reference interval 1980–2009. Impact assessments 

that require transient meteorological input or that target 

scenario periods not considered by the specific DC im-

plementation have to interpolate between the DC time 

slices provided, which involves assumptions about the 

evolution of climate change and climate variability in the 

non-covered periods (e.g. Farinotti et al. 2012).

Bias-corrected transient climate scenarios are presented for 28 temperature and 27 precipitation sites in Switzer- 
land and for 15 GCM-RCM chains of the ENSEMBLES project

The new scenarios are complementing the existing delta-change based daily local scenarios of CH2011

They provide an added value with respect to future changes in temporal climate variability and in extremes 
and pave the way towards the upcoming CH2018 scenarios



4 The mentioned limitations of DC can be partly overcome by 

explicit bias correction (BC) approaches. Instead of scaling ob-

servations by a climate model-derived climate change signal, 

BC explicitly corrects for systematic biases in transient climate 

model output. This correction is based on a comparison of 

climate model output and observations within a common 

historical reference period and the establishment of a correc-

tion function to translate biased climate model output into 

de-biased transient time series. Similar to DC, BC can implic-

itly include a downscaling step to derive climate conditions 

representative for the site scale. Note, however, that BC can 

never correct for all kinds of climate model biases (see Chap-

ter 5) which is the reason why BC is nowadays also referred 

to as bias adjustment.

The present CH2011 Extension provides bias-corrected tem-

perature and precipitation scenarios at daily resolution for 

several sites in Switzerland based on the ENSEMBLES re-

gional climate projections (van der Linden and Mitchell 2009). 

It thereby complements the CH2011 daily local scenarios 

(Bosshard et al. 2011). The BC scenarios are based on results 

obtained in the frame of the ELAPSE project (Enhancing lo-

cal and regional climate change projections for Switzerland) 

which was funded by the Swiss State Secretariat for Education, 

Research and Innovation SERI, and on research that has been 

conducted in relation to precipitation scenarios (e.g. Rajczak 

et al. 2016b). Within ELAPSE several bias correction methods, 

namely a large number of variants of the quantile mapping 

(QM) methodology, were evaluated with respect to their reli-

ability and robustness when applied over the Swiss territory. 

The ELAPSE project itself was closely related to the recent 

COST-Action VALUE (Validating and Integrating Downscaling 

Methods for Climate Change Research; Maraun et al., 2015; 

www.value-cost.eu) that aims at inter-comparing and evalu-

ating statistical and dynamical climate downscaling methods.

The following Chapter provides an overview on the QM meth-

odology and on the specific setups that were evaluated in 

the frame of ELAPSE. Chapter 3 then presents selected eval-

uation results. Based on one particular QM implementation, 

BC scenarios for several Swiss sites were produced which are 

presented and compared to the respective DC-based CH2011 

product in Chapter 4. Chapter 5 provides details on how to 

use the new BC scenarios and on inherent limitations, before 

summarizing and concluding this report in Chapter 6. Note 

that Chapters 3 and 4 only provide a concise summary of the 

results obtained within the ELAPSE project. More details can be 

found in Ivanov et al. (2015) and Ivanov and Kotlarski (2017).

www.value-cost.eu
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2|	 Quantile Mapping

2.1
Overview

In recent years, the quantile mapping (QM) method became 

increasingly popular to both correct for systematic biases in 

climate model simulations and to bridge the scale gap be-

tween coarse resolution climate model output and the site 

scale. Originating from the empirical transformation of Pan-

ofsky and Brier (1968), QM corrects for biases in the distri-

bution of a simulated variable (the predictor) by compar-

ing the model output against the observational distribution 

(the predictand; see the illustrative example in Figure 1). The 

matching of both distributions is achieved by establishing a 

correction function that transforms simulated quantiles into 

their observed counterparts. This correction function is then 

applied to each member of the simulated time series yielding 

a bias-corrected series with a distribution similar (or identi-

cal) to the observed one. The implicit assumption is that the 

model can predict ranked categories of the variable of inter-

est, i.e. quantiles, but not its actual values (Déqué 2007). Simu-

lated and observed quantiles can either be based on the full 

empirical distribution (non-parametric implementation; e.g. 

Déqué 2007; Themessl et al. 2012) or on a fitted theoretical 

distribution (parametric implementation, e.g. Piani et al. 2010). 

Figure 1

Illustration (idealized) 

of the QM method: The 

distribution of a simulated 

variable (here: daily mean 

temperature; solid blue 

line) is corrected to match 

the observed distribu-

tion (solid red line). Upper 

panel: Probability density 

function. Lower panel: 

Cumulative distribution 

function. Dashed blue line: 

Distribution of the bias-

corrected model output.
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Figure 2

Application of QM in a 

climate scenario context. 

Step 1: Calibration of the 

correction function in a 

historical calibration pe-

riod. Step 2: Application 

of the calibrated function 

in order to generate bias-

corrected (and possibly 

downscaled) climate 

scenarios. 

If the observational reference against which QM is calibrated 

reflects the same spatial scale as the raw climate model output 

(which is the case if gridded observations of the same spatial 

resolution and reflecting grid cell area mean values are used), 

QM has to be considered as a mere bias correction. Most ap-

plications, however, implicitly include a downscaling compo-

nent by calibrating QM against observations that reflect the 

site scale, i.e., against station measurements. This additional 

downscaling component is an attractive property of QM, but 

also afflicted with specific problems and limitations (see be-

low). In this context QM can be classified as a MOS (Model 

Output Statistics) methodology that directly relates modelled 

predictors to their observed counterparts (Maraun et al. 2010) 

and that can be used to bias-correct and downscale coarse 

resolution global or regional climate model output in order 

to provide climate scenarios at the site scale. This application 

of QM in a climate scenario context is illustrated in Figure 2: 

In a first step, climate model output for a historical period is 

compared against observations for the same period and a 

quantile-dependent correction function is established. This 

calibrated function is in a second step applied to the entire 

climate model time series, yielding bias-corrected (and pos-

sibly downscaled) time series for both the historical and the 

future scenario period. By definition, the distributions of the 

observed and the bias-corrected series match each other in 

the historical calibration period.

A large number of studies recently applied QM in a downs-

caling context and documented the method’s general appli-

cability and a performance that is often comparable or even 

superior to other empirical-statistical downscaling approaches 

(e.g. Boé et al. 2007; Themessl et al. 2011; Gudmundsson et 

al. 2012; Themessl et al. 2012). Several works explicitly applied 

QM as an interface between coarsely-resolved and poten-

tially biased climate model output and subsequent climate 

impact models (e.g. Wood et al. 2004; Hagemann et al. 2011; 

Finger et al. 2012; Rajczak et al. 2016a). Although QM does 

not explicitly correct for a biased temporal variability in raw 

climate model output (Addor and Seibert 2014), Rajczak et 

al. (2016b) showed that for instance biases in wet day-dry 

day transition probabilities and in multi-day indices can be 

effectively removed. Furthermore, Wilcke et al. (2013) found 

that the separate application of QM to several meteorological 

variables retains inter-variable dependencies as represented 

by the climate model output (although it doesn’t necessarily 

correct for biased inter-dependencies). Despite these prom-

ising results, issues concerning the applicability of QM in a 

downscaling context remain (see also Chapter 5). These in-

clude (1) non-stationarities of climate model biases (e.g. Buser 

et al. 2009; Maraun 2012; Bellprat et al. 2013) that can only 

partly be represented by QM, (2) a potentially distorted spa-

tial climate variability (Maraun 2013), (3) a spurious influence 

on climatic trends due to variance inflation (Maraun 2013), (4) 

issues concerning the spatial representativeness of the un-

derlying climate model output (Maraun and Widmann 2015), 

(5) a potentially dangerous application of QM in the presence 

of strong circulation biases in the underlying climate model 

output (Maraun and Widmann 2015), and (6) uncertainties in 

the calibrated correction function as a consequence of multi-

decadal climate variability (e.g. Maurer et al. 2016). 

Observations

Historical reference period Future period

Bias-corrected climate model

Raw climate model

2.	 Application of the calibrated correction function
	 to the entire climate model time series

1.	 Calibration of a quantile-dependent
	 correction function



7 2.2
Implementation for Switzerland

Within the ELAPSE project the applicability, robustness and 

the added value of QM with respect to DC-based approaches 

have been assessed for the Swiss territory. Both daily tem-

perature and daily precipitation performance measures were 

considered. For this purpose 21 variants of QM were imple-

mented, among them 20 non-parametric implementations. 

These variants differ with respect to (a) the derivation of dis-

tributional quantiles (linear interpolation between empirical 

percentiles versus direct use of all empirical data quantiles 

versus theoretical fit of the empirical distribution function) 

(b) the temporal resolution of the derived correction function 

(explicit consideration of each day of the year versus interpola-

tion between the 12 centers-of-month) and (c) the treatment 

of new extremes (correction according to the 99th percen-

tile versus correction according to the mean of all quantiles 

above the 99th percentile versus correction according to the 

maximum empirical quantile; for precipitation only: additive 

versus multiplicative correction). Additionally and for the case 

of precipitation only, a parametric implementation based on 

a mixture model that approximates the distribution of daily 

precipitation values by combining a Gamma and a general-

ized Pareto distribution (Frigessi et al. 2002) has been imple-

mented. Furthermore, a correction of the mean temperature 

and precipitation bias, i.e. the simplest bias correction one 

can think of, has been considered and compared to the more 

complex QM methodology. We her refrain from listing details 

on the individual QM implementations but refer to Ivanov et 

al. (2015) and Ivanov and Kotlarski (2017) instead.

For each bias correction method the short-term stability of 

the correction function was tested in a cross-validation frame-

work: The historical 40-year interval 1970–2009 was divided 

into the two sub-periods 1970–1989 and 1990–2009, each of 

which was corrected independently based on the calibration 

of the correction function over the other sub-period. Further-

more, the inter-variable consistency between the separately 

bias-corrected temperature and precipitation series has been 

assessed. The decadal-to-centennial scale stability of the bias 

correction methods was tested in a series of pseudo-reality 

experiments (e.g. Vrac et al. 2007). Here, the unknown and 

hence non-observed future “reality” (2070–2099) was pro-

vided by an individual climate model simulation which also 

served as calibration target in a historical calibration period 

(1980–2009) against which all other climate model simula-

tions were calibrated.

Climate model data were provided by 15 transient regional 

climate scenarios of the ENSEMBLES project combining 11 

different regional climate models (RCMs) with 6 different 

global climate models (GCMs) and assuming the SRES A1B 

emissions scenario (see Table 1). These 15 GCM-RCM chains 

provide output at a spatial resolution of about 25 km and cor-

respond to the 14 chains used in CH2011 for the two later 

scenario periods (see Figure 2.4 in CH2011 (2011)) plus the 

additional chain DMI-BCM. As bias correction target, i.e. as 

local reference, homogenized daily temperature and precipi-

tation time series for 28 stations of the Swiss National Basic 

Climatological Network (NBCN; Begert et al. 2007) were used 

(28 stations for temperature and 27 for precipitation; see Fig-

ure 3). These stations form a subset of those considered in 

the CH2011 local scenarios at daily resolution (Bosshard et 

al. 2011). In the cross-validation analysis the GCM-RCM data 

were spatially interpolated to station locations by means of 

an inverse distance weighting interpolation algorithm using 

the four nearest grid points, in accordance with CH2011 (2011) 

and Bosshard et al. (2011). In the pseudo-reality experiments 

the grid point that is closest to the respective station location 

has been extracted from each individual GCM-RCM chain 

which implies that pseudo-observations and model projec-

tions have the same spatial resolution (the one of the under-

lying GCM-RCMs). Hence QM in the pseudo-reality frame-

work does not include an implicit downscaling step, but has 

to be considered as a pure bias-correction approach. Model 

chains having 360- or 365-day calendars were converted to 

a Gregorian calendar prior to the analysis by randomly add-

ing missing values into the daily time series until the length 

of the respective Gregorian year is reached.

Based on the evaluation results and number of criteria (see be-

low) one specific QM implementation has finally been selected 

to produce bias-corrected scenarios at daily resolution for all 

28 NBCN stations and for all 15 GCM-RCM chains considered.



8

ALT

ANT

BAS

BER

CDF

CHD

CHM

DAV

ELM

ENG

GRC

GRH

GSB

GVE

JUN

LUG

LUZ

MER

NEU

OTL

RAG

SAE

SAM

SBE
SIA

SIO

SMA
STG

SAR

Temperature and precipitation

Temperature only

Precipitation only

Figure 3

Location of the NBCN 

stations for which QM has 

been evaluated and for 

which bias-corrected cli-

mate scenarios were pro-

duced. Temperature: 28 

stations (black and red). 

Precipitation: 27 stations 

(black and blue). The 

abbreviations refer to the 

unique station identifiers, 

see Ivanov et al. (2015) for 

details on the stations.

Table 1

List of the 15 employed 

GCM-RCM model chains 

from the ENSEMBLES 

project. The dark gray 

shading indicates the 

10 model chains that were 

used for the CH2011 local 

scenarios at daily resolu-

tion (Bosshard et al. 2011).

Institution GCM RCM

CNRM ARPEGE Aladin

DMI ECHAM5 HIRHAM5

ETHZ HadCM3Q0 CLM

METO-HC HadCM3Q0 HadRM3Q0

ICTP ECHAM5 REGCM3

KNMI ECHAM5 RACMO2

MPI-M ECHAM5 REMO

SMHI BCM RCA

SMHI ECHAM5 RCA

SMHI HadCM3Q3 RCA

C4I HadCM3Q16 RCA3

DMI ARPEGE HIRHAM5

DMI BCM HIRHAM5

METO-HC HadCM3Q16 HadRM3Q16

METO-HC HadCM3Q3 HadRM3Q3
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3|	 Evaluation of the approach

We here present the results of the cross-validation exercise, 

the pseudo-reality evaluation and the assessment of inter-

variable consistency. For reasons of brevity, no figures are 

shown for the two latter aspects and only a brief summary 

of the evaluation is provided. For details, the reader is referred 

to Ivanov and Kotlarski (2017). A range of evaluation metrics 

is considered, among them the seasonal mean bias, the bias 

of distributional percentiles and of return values as well as 

the bias of selected impact-relevant indices. Return values 

were estimated based on a generalized extreme value (GEV) 

distribution fitted to the seasonal block maxima (two well-

separated daily maxima per season) by means of a modified 

maximum likelihood method using a Bayesian prior for the GEV 

shape parameter (cf. Frei et al. 2006). In all figures shown, the 

individual QM implementations are named according to the 

scheme [CDF]_[EXTREMES]_[INT] (see also Chapter 2). [CDF] 

describes the way in which the cumulative density function 

(CDF) of a given distribution is obtained, i.e., either by con-

sidering the individual quantiles (step) or by linearly interpo-

lating between the percentiles (linear). [EXTREMES] denotes 

the handling of new extremes that are corrected additively 

either according to the correction of the 99th percentile of 

the calibration period (add), according to the mean correction 

for all empirical quantiles larger or equal to the 99th percen-

tile (addMean) or according to the correction of the largest 

quantile of the calibration period (addMax). Finally, the suffix 

[INT] denotes whether a temporal interpolation of the respec-

tive distributions between the 12 centers-of-month has been 

applied (int) or the correction function has been established 

separately for each DOY (empty). The method mean repre-

sents the simple correction of the mean bias (see above), raw 

denotes the raw RCM output. Frigessi_ int is the parametric 

QM implementation for precipitation (mixture model; Frigessi 

et al. 2002). For further details the reader is referred to Ivanov 

et al. (2015) and Ivanov and Kotlarski (2017).

Figure 4 shows the cross-validation results for several tem-

perature characteristics in the winter (DJF) and the summer 

(JJA) season. All QM implementations effectively decrease 

the partly substantial biases of the raw models (last row for 

each season) and, furthermore, are in most cases superior 

to a simple correction of the mean bias (second last row for 

each season). This is true for both distributional properties 

(percentiles, mean value, interquartile range) and estimated 

return values. Note that the raw models’ biases include sys-

tematic deviations due to the scale mismatch between a cli-

mate model grid cell and a particular station, especially with 

respect to the reference elevation. Differences between the 

individual QM implementations are small. The methods that 

are only calibrated at the centres of the 12 calendar months 

and linearly interpolated in time (int), are typically just as good 

as their daily-calibrated counterparts. Similar results are ob-

tained for precipitation characteristics (Figure 5): The biases 

of the raw climate model output are effectively reduced by 

QM. Again, the individual QM implementations are close to 

each other and are in all cases superior to a simple correction 

of the mean bias. The parametric mixture model (uppermost 

row) typically shows a slightly worse performance compared 

to the non-parametric implementations. Besides distributional 

properties and estimated return values, QM is furthermore 

able to accurately represent further impact-relevant (multi-day) 

indices, see Figure 6 for selected examples. These results are 

in accordance with the recent study of Rajczak et al. (2016b) 

who cross-validated one specific QM implementation with 

respect to several precipitation indices.

Similar evaluation results are obtained for the pseudo-real-

ity exercise. For reasons of brevity the respective figures are 

not shown in this report, but are presented and discussed in 

Ivanov et al. (2015) and Ivanov and Kotlarski (2017). The sat-

isfying model performance in the pseudo-reality framework 

indicates a long-term stability of the quantile-based correc-

tion functions also beyond the historical climate. Furthermore, 

the analysis of the inter-variable consistency reveals that QM 

substantially improves the joint distribution of daily tempera-

ture and precipitation that can be considerably biased in the 

raw model output (not shown here as well; see Ivanov and 

Kotlarski 2017).
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Figure 4

Mean absolute biases [K] of selected daily temperature characteristics in the cross-validation exercise, aver-

aged over all GCM-RCM chains, stations, and the two cross-validation periods. X-axis: Temperature character-

istics (RV: daily minimum and maximum temperature return values; X%: daily temperature percentiles; mean: 

mean temperature; sd: temperature standard deviation). Y-axis: Bias-correction methods (mean: simple correc-

tion of the mean bias; raw: uncorrected raw models). The methods above the dashed line (_int) are interpolated 

in time between the 12 centers-of-month. The linear_add method has finally been chosen for production of sce-

narios. Upper panel: winter (DJF), lower panel: summer (JJA).
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Figure 5

Mean absolute biases [mm day-1] of selected daily precipitation characteristics in the cross-validation exercise, 

averaged over all GCM-RCM chains, stations, and the two cross-validation periods. X-axis: Precipitation char-

acteristics (X%: wet-day precipitation percentiles; RV: daily precipitation return values; mean: mean precipita-

tion; spread: inter-quartile range). Y-axis: Bias-correction methods (Frigessi: parametric mixture model; mean: 

simple correction of the mean bias; raw: uncorrected raw models). The methods above the dashed line (_int) are 

interpolated in time between the 12 centers-of-month. The linear_add method has finally been chosen for pro-

duction of scenarios. Left panel: winter (DJF), right panel: summer (JJA).
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Figure 6

Absolute bias of precipitation impact indices in the cross-validation exercise, averaged over all GCM-RCM 

chains, stations, and the two cross-validation periods. X-axis: Season (winter: DJF, spring: MAM, summer: JJA, 

autumn: SON, cold season: Nov-Apr, warm season: May-Oct). Y-axis: Bias-correction methods. The linear_add 

method has finally been chosen for production of scenarios. Upper left panel: Maximum dry spell length (CDD) 

and maximum wet spell length (CWD). Upper right panel: Maximum 5-day accumulated precipitation (RX5day). 

Lower left panel: Precipitation fraction falling on very wet days above the 95th percentile (R95%tot). Lower 

right panel: Mean wet day intensity (Simple daily intensity index; SDII). Seasons: Winter (DJF), spring (MAM), 

summer (JJA), autumn (SON).
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4|	 Bias-corrected versus
Delta Change Scenarios

Based on the evaluation results summarized in the previous 

Chapter one specific QM implementation has finally been 

selected to produce bias-corrected local climate scenarios: 

The non-parametric linear QM method, calibrated for 
each day of the year, with additive correction for new 
extremes according to the correction of the 99th per-
centile of the calibration period (method linear_add in 

Figures 4, 5 and 6). The same methodology has also been 

applied in previous works (e.g. Boé et al. 2007). This choice 

was based on the performance in the cross-validation and 

pseudo-reality exercises as well as on the ease of imple-

mentation, including the required computational resources. 

Note that for many evaluation metrics, other methods reveal 

a similar performance, and could have been chosen as well. 

Using the linear_add method, transient bias-corrected local 

climate scenarios for the period 1980–2099 at daily resolu-

tion for temperature and precipitation were finally produced 

for the 28 Swiss NBCN stations considered and for all 15 EN-

SEMBLES model chains of Table 1. As calibration target for 

QM observations in the period 1980–2009, i.e. the same ref-

erence observations as used for the DC-based CH2011 sce-

narios, were chosen. We here present selected aspects of a 

comprehensive comparison against the DC-based CH2011 

local scenarios and against climate change signals as repre-

sented by the raw GCM-RCM output. For this purpose, future 

time series for the period 2070–2099 were constructed/ex-

tracted for QM, DC and raw climate model output for each 

site, and climate change signals of selected indicators were  

computed with respect to the reference data in the historical 

period 1980–2009 (which, for the DC-based scenarios, are 

the observations themselves). In all three cases only the 10 

GCM-RCM chains covered by the CH2011 daily local scenarios 

were considered (dark gray background in Table 1).

To illustrate the added value of the new bias-corrected sce-

narios, Figure 7 shows exemplary time series for both delta-

change based and bias-corrected scenarios at the station of 

Zurich-Fluntern (SMA) for three selected GCM-RCM chains 

and for the case of annual mean temperature (i.e., the daily 

temperature scenarios were aggregated to annual mean 

values). The upper panel presents the delta change-based 

CH2011 scenarios. These are available for selected time slices 

only (here: reference period 1980-2009 and scenario period 

2070-2099) and with gaps in-between. The historical ob-

servations serve as reference for all three model chains and, 

by definition, all three scenarios exactly mimic the temporal 

variability of these reference observations. The scenarios only 

differ with respect to the general increase of the temperature 

level which, in this case, is largest for ETH-HadCM3Q0 and 

smallest for SMHI-BCM. Possible changes in temporal vari-

ability between the reference and the scenario period are 

not accounted for. In contrast, the bias-corrected scenarios 

(lower panel; simple correction of the bias in annual mean 

temperature) can pick up such changes while maintaining the 

general level of temperature increase. The scenario time series 

are transient, i.e. without gaps, and each individual scenario 

reflects the temporal variability of the underlying GCM-RCM 

chain, providing a better account on internal climate variability 

in the scenario ensemble. In the historical reference period, all 

scenarios agree on the mean temperature level (as this pe-

riod served as calibration period for the bias correction) but 

exhibit their individual temporal variability.
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Figure 7

Illustration of the 

difference between delta 

change-based and bias-

corrected climate scenar-

ios for the case of annual 

mean temperature [°C] at 

the station Zurich-Flun-

tern (SMA) and for three 

GCM-RCM chains. Upper 

panel: Delta change-based 

scenarios for the period 

2070–2099; note that the 

observations serve as his-

torical reference for all 

three model chains. Lower 

panel: Transient bias-cor-

rected scenarios for the 

period 1980–2099 (here: 

simple correction for the 

bias in annual mean tem-

perature). In both panels 

the gray background de-

notes the historical refer-

ence period for which ob-

servations are available 

and which served as cali-

bration period for QM.

For a quantitative comparison of the previous DC-based and 

the new QM-based scenarios and raw climate model out-

put, Figure 8 shows the range of climate change signals for 

seasonal mean temperature, for the 1st (winter) and the 99th 

(summer) percentile of daily mean temperature and for the 

interannual variability of seasonal mean values. Both DC and 

QM approximately preserve the mean seasonal temperature 

changes as represented by the raw climate models. For DC 

this result is obtained by definition as the DC-based scenarios 

have been developed based on the raw models’ change sig-

nals (Bosshard et al. 2011). QM slightly distorts the raw change 

signals, which can be explained by the quantile-dependent, 

i.e. temperature-dependent, correction function. Regarding 

changes in extreme temperature conditions, DC is not able 

to pick up the increase of the 1st percentile of winter mean 

daily temperature (i.e. the loss of moderate cold extremes) 

as simulated by the climate models. The climate change sig-

nal of this index is obviously associated with modifications 

of the lower tail of the daily temperature distribution which 

cannot be represented by the simple DC approach that sim-

ply relies on changes of the mean. QM, however, is able to 

partly pick this increase of the 1st percentile. A similar reason-

ing applies to changes of interannual temperature variabil-

ity. The changes simulated by the underlying climate model 

chains (mostly decreases in winter and increases in summer; 

see also Fischer et al. 2012) are approximately represented, 

though partly modified, by the QM-based scenarios but not 

by DC. In the latter case, interannual variabilities remain un-

changed as DC simply scales the observed time series of the 

historical reference period and cannot account for changes 

in temporal variability.



15 In the case of precipitation (Figure 9), both DC and QM ap-

proximately conserve the raw models’ change signals (left 

panel). Note, however, that in a few cases QM shows stronger 

precipitation increases in winter than represented by the 

raw climate model output. This can partly be explained by a 

strong dependence of the correction function on the respec-

tive quantile considered. It is not possible to assess whether, 

in these cases, the raw and DC-based change signals or the 

QM-based scenarios are more realistic. Concerning changes 

in 99th percentile of daily precipitation both DC and QM rep-

resent the simulated increase in wintertime, but DC fails to re-

produce the stable level in summer. In this season, the climate 

change signal for extreme precipitation qualitatively differs 

from the respective signal for mean precipitation (see also 

Rajczak et al. 2013). The latter decreases and as DC is based 

on changes in mean precipitation amounts and scales the 

precipitation amounts on every single day with the respec-

tive climate change factor, also extreme precipitation amounts 

decrease in DC. This feature is also illustrated by Figure 10 in 

a spatially explicit context: For most NBCN stations both the 

winter and the summer 99th percentiles either don’t change 

or even increase in the raw model output (averaged over the 

10 GCM-RCM chains considered in this comparison exercise; 

left column). In winter this increase – including its basic spa-

tial pattern – is represented by both DC and QM (middle and 

rightmost columns). In summer, however, only QM is able 

to pick up the simulated change of extreme precipitation 

amounts while DC shows a decrease for the entire country 

corresponding to the decrease of mean summer precipitation.

DC is furthermore not able to reproduce the simulated changes 

in precipitation transition probabilities (Figure 9, right panel). 

The underlying GCM-RCM chains, for instance, simulate a 

decrease of the probability for a dry day to be followed by 

another dry day (p00) in winter and an increase in summer 

(Figure 8, right panel), mainly as a consequence of changes 

in the wet day frequency. These changes are represented by 

QM (see also Rajczak et al. 2016b), but DC shows no or only 

small changes in p00 as (1) the temporal sequence of the sce-

nario time series is identical to the sequence in the scaled ob-

servational reference time series, and (2) dry days (wet days) 

in the historical period mostly remain dry days (wet days) in 

the scenario unless daily precipitation amounts fall below or 

above the wet-day threshold by application of the DC scaling.

Figure 8

Additive temperature climate change signal between 1980–2009 and 2070–2099 for raw model output (raw), 

CH2011 DC-based scenarios (DC) and QM-based scenarios (QM) for winter (DJF, upper rows) and summer (JJA, 

lower rows). Left panel (Mean, 1% (DJF) 99% (JJA)): Seasonal mean temperature and 1st (DJF) and 99th (JJA) 

daily temperature percentile. Right panel (IAV): Interannual variability of seasonal mean temperature. The box-

plots represent the signals for the 10 CH2011 GCM-RCM chains (dark gray background in Table 1) and the 28 

temperature stations considered. Each box is defined by the lower and upper quartiles, the intermediate line 

segment is the median, and the whiskers extend to the data extremes.
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Figure 9

Precipitation climate change signals between 1980–2009 and 2070–2099 for raw model output (raw), CH2011 

DC-based scenarios (DC) and QM-based scenarios (QM) for winter (DJF, upper rows) and summer (JJA, lower 

rows). Left panel (Mean, 99%): Multiplicative climate change signal for seasonal mean precipitation and for 

the 99th percentile of daily precipitation amounts. Right panel (p00): Additive climate change signal for the dry 

day-dry day transition probability (p00). The boxplots represent the signals for the 10 CH2011 GCM-RCM chains 

(gray background in Table 1) and the 27 precipitation stations considered. Each box is defined by the lower and 

upper quartiles, the intermediate line segment is the median, and the whiskers extend to the data extremes.
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Figure 10

Mean multiplicative climate change signal at NBCN sites for the seasonal 99th percentile of daily precipitation 

between 1980–2009 and 2070–2099 for raw model output (raw, left column), CH2011 DC-based scenarios (DC, 

middle column) and QM-based scenarios (QM, rightmost panels) for winter (DJF, upper row) and summer (JJA, 

lower row). The climate change signals are averaged over the 10 CH2011 GCM-RCM chains (dark gray back-

ground in Table 1).
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5|	 Limitations and Instructions for Use

The new transient bias-corrected scenarios for 15 GCM-RCM 

model chains presented in this CH2011 extension are avail-

able from www.ch2011.ch. They are complementing the DC-

based CH2011 daily local scenarios (Bosshard et al. 2011) and 

are based on one emission scenario only (SRES A1B). For each 

of the 28 (temperature) and 27 (precipitation) NBCN stations 

considered, they provide transient daily temperature and pre-

cipitation time series for the period 1980–2099. Observa-

tions in the period 1980–2009 served as calibration target 

for QM. Hence, by definition the distribution of the bias-cor-

rected data in this period corresponds to the distribution in 

the observations, but the bias-corrected time series exhibit 

their own temporal variability which is reflecting the variabil-

ity in the underlying GCM-RCM chains and has no temporal 

correspondence with the observations.

As shown above the new scenarios provide an added value 

with respect to the DC-based CH2011 local daily scenarios. 

However, limitations concerning their usage in climate impact 

studies apply which mainly concern

(1)	 Remaining biases:
	 We here speak of “bias-corrected” scenarios, but the ap-

plied bias-correction procedure only targets the climato-

logical distribution of temperature and precipitation and 

does not necessarily correct for biases in the temporal 

variability. However, there are strong indications that also 

the temporal variability on multiple temporal scales is ac-

curately represented by QM-based scenarios (Ivanov and 

Kotlarski 2017; Rajczak et al. 2016b).

(2)	 Spatial climate variability:
	 The new QM-based scenarios were produced indepen-

dently for the individual 28 (27) NBCN stations and have 

to be interpreted as single site scenarios. Any combina-

tion of the scenarios for two or more of these sites (for 

instance in hydrological applications) has to first verify 

whether spatial climate variability, i.e. the correspond-

ence between scenarios for two or more sites, at the 

required temporal scale is accurately represented. Espe-

cially for close-by sites that are located in the same grid 

cell of the underlying GCM-RCM chain, spatial variability 

might be misrepresented as RCM subgrid variability is 

not accounted for (e.g., Maraun 2013).

(3)	 Inter-variable relations:
	 The new scenarios have been produced independently 

for the two variables temperature and precipitation. 

Hence, a correspondence between daily series of these 

two variables for a specific site is not necessarily given. 

However, recent works suggest a satisfying conservation 

of inter-variable dependencies and even some improve-

ment of biased interdependencies by QM (Ivanov et al. 

2015; Ivanov and Kotlarski 2017; Wilcke et al. 2013).

(4)	 Trends and variance inflation:
	 The applied deterministic QM methodology implicitly 

includes a downscaling step from coarse-resolution cli-

mate model output to the site scale. The latter typically 

exhibits a stronger temporal climate variability. As a con-

sequence, the application of QM implies a statistical in-

flation of temporal variability of the climate model time 

series in many cases, which can have spurious influences 

on long-term climatic trends (Maraun 2013).

(5)	 Stationarity of the bias correction function:
	 In contrast to DC, QM can partly account for non-sta-

tionarities of climate model biases. If, for instance, model 

temperature biases are larger for high than for low tem-

perature quantiles during the historical reference period, 

future warming is likely to increase the mean temperature 

bias. Such non-stationarities of the mean bias can be rep-

resented by QM. However, QM still assumes a stationar-

ity of the quantile-based bias correction function itself. In 

case that GCM-RCM scenario simulations are subject to 

non-stationary biases of individual temperature or pre-

cipitation quantiles, these non-stationarities are not rep-

resented by QM-based climate scenarios. However, the 

pseudo-reality evaluation (Section 4; Ivanov et al. 2015; 

Ivanov and Kotlarski 2017) provides basic confidence in 

the applicability of QM also in a long-term context.
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6|	 Conclusions

A new set of bias-corrected climate scenarios for Switzerland 

is presented. These scenarios are based on the QM meth-

odology, cover daily temperature and precipitation and are 

available for 15 GCM-RCM model chains and 28 (27) stations 

in Switzerland. A detailed evaluation of the approach carried 

out within the ELAPSE research project indicates a satisfying 

and robust performance for a range of climate indicators at 

different temporal scales. A comparison of the new scenar-

ios to the previous DC-based CH2011 local daily scenarios 

furthermore reveals an added value of QM with respect to 

changes in temporal climate variability, changes in moderate 

extremes and transient applications. However, also the new 

scenarios are subject to potential shortcomings and do not 

necessarily correct for all bias characteristics in the underly-

ing GCM-RCM chains. Also, simulated changes in very rare 

events beyond the moderate extremes considered here have 

to be considered as highly uncertain. Therefore, a prudent 

and well-thought-through application in any climate impact 

assessment is recommended.

In a contextual sense, the new bias-corrected scenarios are 

meant to complement existing scenario products, in particular 

the DC-based local daily scenarios of CH2011. They hence en-

able a more comprehensive description and quantification of 

the influence of climate model downscaling and postprocess-

ing strategies on the outcomes of climate impact assessments. 

Any strategy has its specific and inherent advantages but is 

also afflicted with its specific shortcomings and might have 

its specific fields of applications. In the case presented here, 

QM and DC can be associated with certain modifications of 

the raw models’ climate change signals which will ultimately 

impact the results of subsequent model applications (such as 

the application of hydrological models). The availability and 

consideration of several scenario products obtained by inde-

pendent postprocessing strategies is hence essential for the 

robustness of climate impact assessments.

Given the promising evaluation results presented above and 

in the available literature, the QM approach will represent a 

central approach in the frame of the upcoming CH2018 Swiss 

climate change scenarios for bias-correcting and downscaling 

the newest generation of GCM-RCM experiments provided 

by the CORDEX initiative www.cordex.org Hence, a further 

purpose of the scenario product presented in this report is to 

bridge the gap between the previous DC-based CH2011 sce-

narios and the upcoming CH2018 release (www.ch2018.ch).

www.cordex.org
http://www.ch2018.ch
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